yyw_articles

Home > 
  • yyw_articles
  • solar energy storage lithium ion battery 15kwh 48v.Lithium iron phosphate battery separator producti

    Time:2024.12.24Browse:0

    Share:




    Lithium iron phosphate battery separator production process flow and principle. The production process of lithium iron phosphate battery separators is complex and the technical barriers are high. High-performance lithium batteries require separators with uniform thickness and excellent mechanical properties (including tensile strength and puncture resistance), breathability, and physical and chemical properties (including wettability, chemical stability, thermal stability, and safety). The excellence of the separator directly affects the capacity, cycle ability, safety performance and other characteristics of lithium batteries. The production process principle of lithium ion battery separator The production process of lithium iron phosphate battery separator is mainly divided into dry method and wet method. The main steps and principles of dry and wet process are: 1. Dry method - first conduct the polyolefin resin Melting, extrusion and blowing operations form a crystalline polymer film, which is then subjected to crystallization heat treatment and annealing operations to obtain a highly oriented film structure, which is then stretched at high temperatures to test crystal cross-section separation to form a porous structure battery separator. The dry process can also be divided into uniaxial stretching and biaxial stretching. 2. Wet method - Traditional wet method preparation is mainly based on phase inversion method, and in recent years, TIPS thermally induced phase separation method is mainly used. The principle is to mix crystalline polymers, thermoplastic polymers and small molecule chemical diluents with high boiling points (such as paraffin oil) to form a homogeneous solution at high temperature, and then lower the solution temperature to cause solid-liquid phase separation of the mixture. Or liquid-liquid separation, extracting and removing small molecule chemical diluents to form a porous membrane of thermoplastic and crystalline polymers. The production process of lithium iron phosphate battery separator. The many characteristics of lithium iron phosphate battery separator and the difficulty in balancing its performance indicators determine that its production process has high technical barriers and difficult research and development. The separator production process includes raw material formula and rapid formula adjustment, micropore preparation technology, independent design of complete sets of equipment, and many other processes. Among them, micropore preparation technology is the core of the lithium iron phosphate battery separator preparation process. According to the difference in micropore formation mechanism, the separator process can be divided into two types: dry method and wet method. Dry separators are divided into single draw and double draw according to the stretching orientation. The dry separator process is the most commonly used method in the separator preparation process. This process is to mix high molecular polymers, additives and other raw materials to form a uniform melt. During extrusion, A lamellar structure is formed under tensile stress. The lamellar structure is heat-treated to obtain a hard elastic polymer film, which is then stretched at a certain temperature to form slit-like micropores. After heat setting, a microporous film is produced. At present, dry processes mainly include dry uniaxial stretching and biaxial stretching. The dry single extrusion process is: 1) Feeding: After preprocessing raw materials such as PE or PP and additives according to the formula, they are transported to the extrusion system. 2) Casting: The pretreated raw materials are melted and plasticized in the extrusion system and then the melt is extruded from the die. The melt forms a base film with a specific crystal structure after casting. 3) Heat treatment: The base film is heat treated to obtain a hard elastic film. 4) Stretching: The hard elastic film is cold stretched and hot stretched to form a nano-porous film. 5) Cutting: Cut the nano-microporous membrane into finished membranes according to customer specifications. The dry double drawing process flow is: 1) Feeding: raw materials such as PP and pore-forming agent are pretreated according to the formula and then transported to the extrusion system. 2) Tape casting: Obtain PP cast sheets with high β-crystal content and good uniformity of β-crystal morphology. 3) Longitudinal stretching: The cast sheet is stretched longitudinally at a certain temperature, and the characteristics of β crystals that are prone to pore formation under tensile stress are used to cause pores. 4) Transverse stretching: The sample is stretched transversely at a higher temperature to expand the pores while improving the uniformity of pore size distribution. 5) Shaping and winding: By heat-treating the separator at high temperatures, the thermal shrinkage rate is reduced and the dimensional stability is improved. Wet process separators are divided into asynchronous and synchronous wet process according to the stretching orientation. It is suitable for producing thinner single-layer PE separators. It is a preparation process with better thickness uniformity, physical, chemical and mechanical properties of separator products. Depending on whether the orientations are simultaneous during stretching, the wet process can also be divided into two types: wet bidirectional asynchronous stretching process and bidirectional synchronous stretching process. The wet asynchronous stretching process flow is: 1) Feeding: PE, pore-forming agent and other raw materials are pretreated according to the formula and transported to the extrusion system. 2) Casting: The pretreated raw materials are melted and plasticized in a twin-screw extrusion system and then the melt is extruded from the die. After casting, the melt forms a cast thick sheet containing a pore-forming agent. 3) Longitudinal stretching: Longitudinal stretching of the cast thick sheet. 4) Transverse stretching: The cast thick sheet after longitudinal stretching is stretched transversely to obtain a base film containing a pore-forming agent. 5) Extraction: The base film is extracted with a solvent to form a base film without pore-forming agents. 6) Shaping: Dry and shape the base film without pore-forming agent to obtain a nano-porous membrane. 7) Cutting: Cut the nano-microporous membrane into finished membranes according to customer specifications. The above is the production process and principle of lithium iron phosphate battery separator. Among energy storage lithium batteries, lithium iron phosphate batteries are still the mainstream at present. Since lithium energy storage batteries do not have high energy density requirements, we expect that by 2020, lithium energy storage batteries The permeability of wet separators in batteries is about 20%.

    Read recommendations:

    18650 800mAh 3.7V

    Lead-acid battery.li ion 18650 battery pack

    How to assemble large -capacity batteries?battery for solar energy storage Manufacturing

    AAA Ni-MH batteries direct sales

    L822 battery

    3.2v 320ah lifepo4 battery.Low-cost, high-activity bifunctional catalysts were developed

    Return to List

    LR927 battery.Can new technology really produce longer-lasting lithium batteries?

    Relevant News