yyw_articles

Home > 
  • yyw_articles
  • CR2354 battery.Japan wants to use hydrogen energy technology to drive social development

    Time:2024.12.24Browse:0

    Share:

      

      In the "Energy Basic Plan", the Japanese government positions hydrogen energy as a core secondary energy alongside electricity and thermal energy, and proposes the vision of building a "hydrogen energy society", hoping to realize hydrogen energy in homes, industries, and transportation through hydrogen fuel cells. applications in other fields, thereby achieving true energy independence. The Japanese government's technical development support for hydrogen and fuel cells is state-led, with special scientific research funds invested in the New Energy Industry Technology Development Organization (NEDO).

      Toyota's first commercial fuel cell vehicle "MIRAI" was launched in December 2014. The car's acceleration time from 100 kilometers to 100 kilometers is about 10 seconds, and its maximum cruising range is more than 700 kilometers. It only takes 3 minutes to replenish hydrogen fuel. It is expected to have an annual output of 30,000 units in 2020. It plans to reduce the price of fuel cell vehicles to about 100 kilometers by 2025. $20,000. In 2026, the Japanese government plans to complete the sales target of 2 million hydrogen fuel cell vehicles and the construction target of 1,000 hydrogen refueling stations.

      Fuel cell vehicles have obvious advantages

      Fuel cell vehicles are vehicles in which hydrogen and oxygen in the air produce electricity through an electrochemical reaction to drive the motor. They have high energy efficiency, low carbon dioxide emissions (or no emissions), long driving distances (currently more than 500 kilometers), and low hydrogen costs ( It has the advantages of being 1/3 of the price of gasoline), short refueling time (about 3 minutes), and its performance is equivalent to that of gasoline vehicles.

      The main goal of fuel cell vehicles is to first put commercial cars on the market in 2015. In 2016, fuel cell buses were put on the market. At the same time, fuel cells have been expanded to other transportation vehicles such as forklifts and ships. Secondly, the price of fuel cell vehicles will drop to the same level as current gasoline vehicles and hybrid vehicles by 2025. Finally, the price of hydrogen will be lower than that of gasoline vehicles when fuel cell vehicles are put into the market. Fuel prices, around 2020, will be lower than hybrid vehicle fuel prices.

      Fuel cell vehicles also have a distributed power supply function. The electricity generated by fuel cell vehicles can be provided for external use, and the power supply capacity is more than five times higher than that of electric vehicles. It can provide power to evacuation sites in special situations such as disasters, and can also play a peak-shaving role during peak power consumption. Validation tests are currently underway in various places.

      In terms of hydrogen manufacturing, transportation and storage, Japan began to build commercial hydrogen stations in 2013 and built 100 hydrogen stations in 2015 centered on the four major urban areas. The distance allowed by users to a gas station is approximately ten minutes by car. Therefore, 100 hydrogen stations in the four major urban areas is the minimum configuration for popularizing fuel cell vehicles.

      Fuel cell vehicles can significantly reduce carbon emissions

      At present, the energy consumption of transportation vehicles accounts for 20% of Japan's energy use, almost all of which relies on oil. The production of hydrogen used in fuel cell vehicles currently basically uses fossil fuels such as naphtha and natural gas. In the future, energy sources such as lignite and crude oil from abroad will be used along with natural gas, as well as renewable energy sources at home and abroad. The transportation industry will move from oil dependence to energy diversification to improve energy security.

      When the number of fuel cell vehicles reaches 6 million units (10% of ordinary household cars in Japan), the cars will reduce carbon dioxide emissions by 9%. Even taking into account the carbon dioxide produced by using petrochemical raw materials to produce hydrogen, it will reduce carbon dioxide emissions by 3.9 million to 7.6 million tons per year.


    Read recommendations:

    102540 1100MAH 3.7V

    What is the difference between ternary lithium battery and lithium iron phosphate battery

    6LR61 alkaline battery.Why do express delivery companies stop transporting lithium batteries

    energy storage system lithium battery Product

    AG12 battery

    energy storage battery 48v 400ah.Can electric vehicles be charged quickly? Will fast charging affect

    Return to List

    3.2v 30ah lifepo4 battery cell.Introduction to new energy battery shell deep drawing forming technol

    Relevant News